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EXECUTIVE SUMMARY 

Lane closures are a necessity for the expansion, improvement and maintenance of transportation 

infrastructure. Unfortunately, most lane closures have an impact on the traveling public and, in 

some cases, may lead to significant delays and loss of reliability. Data-supported methods to 

evaluate the impact of past closures and predict the impact of planned closures are critical in 

designing and evaluating impact-mitigation strategies.  

Transportation agencies use intelligent transportation system (ITS) devices, such as smart work-

zone trailers (SWZTs) to monitor traffic and disseminate information during construction. 

SWZTs are equipped with multiple sensors and can collect data that have the potential to help 

agencies plan, evaluate, and optimize work-zone management. Common challenges faced when 

using data for the direct evaluation of work-zone impacts include data quality, coverage, spatial 

and temporal aggregation, and the lack of clearly defined metrics of performance that accurately 

represent the system conditions given the characteristics of available data. 

This report summarizes research on two topics: the refinement of a data-based method to 

estimate work-zone-related delays and user cost for ongoing and past closures and the 

implementation of machine learning (ML) techniques to forecast the impacts of planned work 

zones on speeds and volumes and for short-term travel-time prediction. The data used in this 

effort were collected on a 20.4-mile section of I-35 in Austin, Texas, and includes SWZT point 

speed and volume data, along with INRIX segment speed data. Forecasting models were trained 

and tested using data from 133 work zones.  

To enhance the estimation of work-zone-related delays and user costs, the researchers developed 

a systematic approach to calculate typical travel times at 15-minute intervals, which were used as 

the reference value against which work-zone travel times were compared. The method considers 

both the need to eliminate outliers that may bias the estimates and the importance of accounting 

for the variation of travel times across weekdays and months of the year. This work proposed 

clusters of days of the week and months of the year expected to have similar typical travel time 

values throughout the day and conducted statistical analyses to confirm that the differences 

among clusters are significant.  

The final workflow involved computing typical travel times within each cluster at 15-minute 

intervals after removing data outliers using a three-sigma rule. Typical travel time estimates were 

provided by sensor and cluster and observed differences among clusters suggest that the 

proposed method is likely to provide more accurate delay estimates than approaches that 

consider a single reference value. 

This effort also explored the use of artificial neural networks (ANNs) to forecast speed and 

volume reduction for planned closures. Speed forecasting models performed well on average 

(root mean square error [RMSE] of10.19 mph) but tended to underestimate speed reductions 

when they were significant. The latter is likely a result of having a small fraction of time steps 

exhibiting significant speed reductions in the training dataset, which consist mostly of nighttime 

closures.  
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Figure 8. Outlier removal for volume  
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Figure 9. Outlier removal for speed 

Five-minute aggregated data are used in this example. The data in the ovals were removed after 

using the three-sigma method. 

In summary, 3.98% of the raw data were removed for all sensors. The percentage of data points 

removed for each sensor is available in the Appendix II spreadsheet file.  

Typical Traffic Condition Estimation 

After removing the outliers, both one-minute speed and traffic count data were aggregated into 

15-minute intervals. Typical traffic conditions were calculated as the average value in each 

interval in the same group across all considered days. A sample is shown in Table 2. Typical 

traffic condition data sample.  
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Table 2. Typical traffic condition data sample 

Sensor Time weekday_group* month_group** Year 
Mean Speed 

(mph) 
speed.sd 

Mean 15-

minute 

Counts 

(vehicle/15-

minutes) 

count.sd 

WZ-IH-35 

SB near 

Woodward 
Street 

12:15:00 3 1 2019 59.78813559 3.289833973 999.0254 135.3667 

EB US 

183 MM 1 
after 

Burnet 

Road 

12:30:00 3 1 2019 57.10610932 10.7252338 972.8778 149.1259 

EB US 
183 MM 2 

after 

Lamar 
Boulevard 

12:30:00 3 1 2019 55.69874477 9.76236764 984.2887 135.0292 

EB US 

183 MM 3 
after 

Cameron 

Road 

12:30:00 3 1 2019 64.33755274 3.883360735 398.4177 99.87347 

* weekday_group: 1=Tuesday–Thursday, 2=Monday, 3=Friday, 4=Saturday, 5=Sunday 

** month_group: 1=January–May, 2=June–August, 3=September–November, 4=December 

The volume.mean and volume.sd columns show the average vehicle count and its standard 

deviation during the corresponding 15-minute interval across days in the same group. The 

corresponding hourly quantities can be obtained by multiplying this value by 4. The integrated 

table is available in the Appendix III spreadsheet file. Figure 10. Typical speed in each day-of-

the-week group for the four month-of-the-year groupings shows the typical speed evolution 

during the day-of-the-week groups for each month-of-the-year grouping.  
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Table 3. Predictor variables for ANN models of work-zone speed impacts 

Predictor Variable Description 

Closure length Length of work zone 

Closure start time Start hour of work zone 

Closure duration Number of hours of work zone 

Percent of lanes closed Number of closed lanes ÷ total existing lanes 

Closure direction  – 

Closure location Distance between start point of work zone and start point of 

corridor 

Day of week index – 

Time step index – 

Typical travel speed for relevant 

segments 

Typical travel speeds every 15 minutes for duration of study 

period (normalized) 

 

For these models, the researchers aggregated segment speed data into 15-minute intervals and 

defined a study period that consisted of one hour prior to the beginning time of the work zone 

and one hour after the end time of the work zone. The selection of the study period was done 

empirically based on the characteristics of the work zones considered in this effort. The proposed 

models produce speed forecasts at 15-minute intervals for all relevant segments during the study 

period. For each closure there were three relevant INRIX segments (Figure 14):  

• Upstream segment: the upstream segment from the start point of the work zone (shown in 

green) 

• Start segment: the segment in which the start point of the work zone is located (shown in 

blue) 

• End segment: the segment in which the end point of the work zone is located (shown in 

orange) 

 

Figure 14. Segment definition for speed prediction model 

Typical speeds were estimated using INRIX data using the same day-of-the-week and month 

grouping approach proposed for SWZT data and 2019 data. The speed was normalized using 

Equation (4) to stabilize the training process: 

min
normalized

max min

x x
x

x x

−
=

−
  (4) 
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where, x  is a raw speed data point for segment s at interval t, and minx  and maxx  are the 

minimum and maximum speed values, respectively, across all segments and time intervals. The 

researchers used the MSE (Equation 5) as the loss function that the training process aimed to 

minimize: 

( )
2

1

1 ˆMSE=
n

i i

i

Y Y
n =

−
 (5) 

where, n  is the number of samples, iY  is the real value of a target variable, and Ŷ is the 

predicted value. The sigmoid function, Equation (6), was used as the activation function: 

1
( )

1 x
S x

e−
=

+
. (6) 

Available data were split into training data and testing data with a ratio of 0.75:0.25. Training 

data were used for the model to learn the relationship between predictors and target variables, 

and testing data were used to evaluate the performance of the trained model. Keras, which is a 

Python (programming language) deep learning application programming interface (API), was 

employed to train the model. Keras further splits the training data into trained data and validation 

data with a ratio of 0.67:0.33 to avoid overfitting. Only the trained data are used to train the 

model; validation data are used to evaluate the model performance at each iteration and adjust 

the model parameters correspondingly. The evolution of the loss value with the epoch is shown 

in Figure 15.  

 

Figure 15. Loss value for speed prediction model 

One epoch is one iteration in which all data in the trained set is trained once. As Figure 15 

shows, the training process converges after 2,500 epochs.  

In this case, Figure 15 compares observed and forecasted speeds on the three relevant segments 

for all work zones in the testing dataset. The green segment has a slope of 1 and represents a 

perfect prediction. The RMSE and MAE for the model performance were equal to 10.19 mph 
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and 5.78 mph, respectively. The MAE value was within 10 percent of the mean value of the 

speeds for work zones in the testing data, which was equal to 59.5 mph, so the trained model was 

considered to perform well overall. However, Figure 16 suggests that the model performed well 

when the true speed was high but tended to overestimate the speed when the real speed was low.  
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Figure 16. Performance of ANN model for speed impact forecasting on testing data 

The poor performance for closures in which traffic speed was significantly reduced was likely a 

result of having few data points in the training dataset for which speeds through the work zone 

decreased by more than 5 mph. The former is not surprising given that most of the closures were 
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scheduled during nighttime hours when the traffic volume was low and the travel speed was not 

significantly reduced. In other words, the model is not able to generate accurate predictions for 

cases that it is not trained to predict.  

Figure 17 shows the comparison between typical speeds and speeds during work zones for all 

available work-zone data.  

 

 

 

Figure 17. Observed work-zone speed impacts for all work zones 

This figure shows a small portion of the work-zone data had reduced speeds, while most of the 

speeds were similar to typical speeds. Only 10.5 percent of SB and 23.5 percent of NB closures 

had more than 30 minutes out of two hours in which the speed reduction was more than 5 mph 
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compared to the typical condition. As a result, the lack of enough samples with significantly 

reduced speed made the model unable to predict reduced speed accurately. It is expected that the 

model performance could be improved if a larger dataset is used for training. 

ANN for Work-Zone Volume Impacts 

This section describes an ANN model to forecast the impact of work zones on traffic volume. In 

the context of this effort, volumes that were lower than typical values may be interpreted as a 

reduction of travel demand through the work zone, since the types of closures analyzed in this 

study did not lead to substantial queues. For this model, the researchers used SWZT volume data 

as predictors. The studied time period was the work-zone duration, and relevant sensors for the 

analysis are defined as shown in Figure 18.  

 

Figure 18. Segment definition for volume prediction model 

The first set of sensors are upstream sensors within two miles of the start point of the work zone. 

The second set of sensors are on the work zone. The average volume measured by sensors 

located in the upstream segment was regarded as travel demand for the work-zone segment.  

Table 4. Predictor variables for ANN models of work-zone volume impacts presents the 

predictor variables for this ANN model.  

Table 4. Predictor variables for ANN models of work-zone volume impacts 

Predictor Variable Description 

Closure length Length of work zone 

Closure start time Start hour of work zone 

Closure duration Number of hours of work zone 

Percent of lanes closed Number of closed lanes ÷ total existing lanes 

Closure direction  – 

Closure location Distance between start point of work zone and 

start point of corridor 

Day of week index – 

Time step index – 

Typical vehicle counts for 

relevant segments 

Typical average vehicle counts every 15 minutes 

for duration of study period (normalized) 

 

The target variables were the average volumes (vehicles per hour per lane [vphpl]) for the 

duration of the closure on each segment. 
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A preliminary analysis of the training data suggested that sensor errors may have been present in 

the sample. Figure 19 shows a cluster of data points for which traffic volumes on the day of the 

closure were larger than typical volumes. These data points were removed from the data for final 

model training and validation. 

 

 

Figure 19. Comparison between typical volume and volume during work zones 

The performance of the trained model on the testing data is shown in Figure 20, which suggested 

that model performance was consistently good for a range of actual volumes.  
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Figure 20. Performance of the volume prediction model 

The RMSE and MAE were equal to 57 vphpl and 44 vphpl, respectively. The MAE 

approximated 14 percent of the average volume in the testing data, which was 309.4 vphpl.  

The researchers compared the performance of the ANN model to the volume estimates obtained 

by using a fixed reduction ratio model based on historical data and a linear regression model. 

The two alternative approaches are appealing because they are simpler to estimate than an ANN. 

The fixed ratio reduction model assumes the volume reduction ratio for any work zone is equal 

to the average volume reduction ratio over all work zones, which equaled 3.7 percent and 12.6 

percent for the upstream segment and work-zone segment, respectively. The linear regression 

model takes the same predictors as the ANN model. The RMSEs and MAEs are shown in Table 

5. 
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Table 5. Performance comparison after suspicious data removal 

Model RMSE (vphpl) MAE (vphpl) 

ANN 57 44 

Fixed reduction ratio (3.7%, 12.6%) 144 112 

Linear regression 50 37 

 

The linear regression model had higher accuracy than the ANN. The average volume in the 

testing data without outliers was 309.4 vphpl. Therefore, the MAEs of the ANN model and the 

linear regression model approximate 14 percent and 12 percent of the average volume, 

respectively, and both models are considered to perform well overall. 

Short-Term Travel-Time Prediction 

This section describes the application of three short-term prediction models to the estimation of 

corridor travel times during work zones. Short-term travel-time prediction models are intended to 

provide real-time information to travelers or to support traffic operations. The models that were 

implemented were developed in the context of a separate project and will be documented in a 

final report to be submitted to TxDOT by August 31, 2021. The goal of the analysis presented in 

this document is to explore the potential value of short-term travel-time predictions models in the 

context of work-zone traffic management. 

The models that were implemented were trained using 5-minute INRIX data and produce travel 

time forecasts at 5-minute time steps, one hour into the future. A separate model was trained for 

each segment on the corridor and for every 5-minute forecasting horizon. For each segment, 

model inputs consisted of the travel times on selected upstream and downstream segments during 

the previous time steps.  

Corridor travel times were estimated using a dynamic approach that is expected to closely 

resemble the actual travel time experienced by a vehicle during a trip on multiple segments. Most 

practical methods to estimate travel times in real time use an instantaneous approach, in which 

the corridor travel time at time step t=0 is estimated as the sum of segment travel times at t=0. 

However, it is possible for vehicles to arrive to downstream segments at time 1t t= , during 

which the travel time may be different than what was observed at t=0. Therefore, the 

“instantaneous” prediction could be biased. A “dynamic” travel-time prediction framework uses 

the travel time for each segment corresponding to the arrival time at the segment, which requires 

forecasting future travel times for downstream segments.  

The analysis that follows compares the performance of a naïve model, which uses the current 

travel times on each segment as the predicted travel time for future time steps (instantaneous 

travel time) to two dynamic travel-time prediction methods: 1) a linear time series (LTS) model 

that uses the INRIX speed from all INRIX segments and the SWZT speed and volume from all 

SWZT sensors in the past half hour to predict travel time for each INRIX segment in the next 

hour by applying linear regression and 2) a recurrent neural network (RNN) that uses the current 
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INRIX speed and SWZT speed and volume to predict the travel time on each INRIX segment in 

the next hour. RNN is a type of neural network that is able to predict temporal dynamic behavior. 

Note that these models do not consider the work-zone information as predictors, so the 

researchers expected a larger error for the prediction for a work-zone day than for a typical day.  

Figure 21 exemplifies the prediction results for these models on two work-zone days.  

 

 

Figure 21. Performance of short-term prediction models for a work-zone day 

The dashed lines indicate the start and end times of the work zone. For closure 1317, the model 

can accurately forecast the increased travel time, while, during closure 1339, all models 

underestimate the increase in travel times. This is likely due to the fact that the model is trained 

without considering work-zone characteristic parameters.  

Figure 22 and Figure 23 show the RMSE and MAE of the travel time prediction during the 

work-zone hours (closure) and during the same hours of the day for all other days (typical) for 

the entire corridor (Figure 22) and for the work-zone segments (Figure 23).  
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Figure 22. Performance of short-term travel-time prediction models for total corridor 

travel time forecasting  

 

Figure 23. Performance of short-term travel-time prediction models on segments affected 

by work zone 

It is important to consider that the average performance of the RNN and LST models was 

observed to be up to 50 percent better than that of the naïve model during a.m. and p.m. peak 

periods. The benefits of these models at nighttime (when most of the analyzed closures took 

place) is less pronounced, as reflected by the similar height of all red bars in Figures 22 and 23, 

particularly on typical days and when only the closure links are considered. However, the ML 

approaches were observed to perform consistently better than the naïve approach during work 

zones. All models performed worse during work zones, but it is expected that errors may be 

reduced by explicitly considering work-zone variables in the training process.  
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SUMMARY AND FUTURE WORK 

This report summarizes the implementation of ML techniques to forecast the impacts of planned 

work zones on vehicle speeds and traffic volumes and for short-term travel-time prediction. The 

data used in this effort were collected on a 20.4-mile section of I-35 in Austin, Texas, and 

includes SWZT point speed and volume data, along with INRIX segment speed data. Forecasting 

models were trained and tested using data from 133 work zones.  

To enhance the estimation of work-zone related delays and user costs, the researchers developed 

a systematic approach to calculate typical travel times at 15-minute intervals, which were used as 

the reference values against which work-zone travel times were compared. The method 

considered both the need to eliminate outliers that may bias the estimates and the importance of 

accounting for the variations in travel times across days of the week and months of the year. This 

work proposed clusters of days of the week and months of the year expected to have similar 

typical travel time values throughout the day and conducted statistical analyses to confirm that 

the differences among the clusters were significant.  

The final workflow involved computing typical travel times within each cluster at 15-minute 

intervals after removing data outliers using a three-sigma rule. Typical travel time estimates were 

provided by sensor and cluster and observed differences among clusters suggested that the 

proposed method is likely to provide more accurate delay estimates than approaches that 

consider a single reference value. 

This effort explored the use of ANNs to forecast speed and volume reduction for planned 

closures. Speed forecasting models performed well on average (RMSE of 10.19 mph) but tended 

to underestimate speed reductions when they are significant. The latter is likely a result of having 

a small fraction of time steps exhibiting significant speed reductions in the training dataset, 

which consisted mostly of nighttime closures.  

Models used to forecast changes in traffic volumes had an average error (RMSE) of 57 vphpl, 

which is comparable to that of linear regression models that may be preferable since they are 

simpler to estimate. Although the ANN model had slightly higher errors than a linear regression 

model, the researchers believe the ANN model would outperform the linear regression model if 

data for more daytime closures and more types of highway closure locations becomes available.  

The research team also analyzed the performance of three STTTP methods, trained as part of a 

separate effort during work zones. STTTPs are intended to provide a more precise estimate of 

expected travel times in real time. The trained models, which included a time series approach 

and two types of ANNs, were very successful on average, outperforming traditional approaches 

by up to 50 percent during peak periods.  

While model performance was not as impressive during the presence of work zones, preliminary 

results were promising, with ML models consistently outperforming the traditional approaches. 

Further model refinements to explicitly consider the presence of work zones and their 
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characteristics are expected to improve model predictions during the presence of work zones. 

The efforts described in this report illustrate the potential value of emerging data sources and 

modeling techniques to support work-zone planning and management.  

The original workplan for this project involved incorporating successful workflows into an 

existing web application. Unfortunately, the data pipeline that feeds such web application 

became inactive in late 2020 due to COVID-related budget costs. Instead of working on 

implementation, researchers emphasized the exploration of ML methods to support work-zone 

planning and operations. All findings were documented to facilitate their integration into the web 

application once the data pipeline is restored. 
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